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INFIRITELY DIVISTBLE DISTRIBUTIONS IN STATISTICAL
HEAVY-T 3 AND CORVOLUTIGH
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Urniversity of [llinois at Chicago Circle
3 o 9 g
4
] Abstr Abstract
4
1 The family of inflninoiy divisible distributions is shown to :
provide alternative formulations in several inferential situations. 3
In particular, thw family provides hesavy-tailed distributions and
1 distributions for use in models involving convolutions, such as
signal-plus-noise models. Characterizations UI sub-families of the
infinitely divisible family are used to obtain statistical tests of
membership in those ”-xh-m-n.Llic&z. Special attention is given to the
normal and normal-plus-Poisson sub-families.
1. Introduction. A random variable (r.v.) is said to be infinitely divisible
(inf. div.) if for every n = 2,3,... there exist independent identically distributed :
v - M R a3 w«+ Such that the distribution of X + X . + ... + X is the same ‘
nl n?2 a nl nz nn
as that of X. Thus, letting U =V mean that U and V have the same distribution, i
such an X can be expressed in terms of a triangular array.
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n terms of the characteristic function (e.f.) #£(u) of the r.v. X, this is equivalent

to saying that for each n = 2,3,... there exists a c.f. f'n(u) such that

rlu) = [£ (u))".
Tl
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words and phrasea. Infinite divisibility, normality, Poisson distribution,

sal T, ..Ll mnts, convolutions.
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[t will be shown that the

inf'. div. distributions is a family which can
numbar of models, especially those requiring heavy-tailed disgtributions

ich the observed variable is a convolution, a sum of two independent

he family of inf. div. distributions is quite broad. It includes the normal
iistributions, as well as the gamma distributions, the related exponential and chi-square
tistributions, and the double-exponential distributions. It includes the Poisscon and
Poisson distributions (distributions generated by putting a distribution on
ster), though here we shall be interested primarily in continucus
distributions. The family also includes the generalized Poisson
(distributions of r.v.'s which are sums of a Poisson-distributed number of
distributed r.v.'s). Jome distributions which are not inf. div. are those
=

bounded support, those whose ¢.f. vanishes at some point on the real line, and those

whose c.f. is an entire function which vanishes at some point in the complex plane.
Another way to demonstrate the breadth of the inf. div., family is note that
each of the following familics of distributions contains the preceding: normal distri-

butions, stable dicstributions, seif-decomposable distributions, inf. div. distributions.
Relatively recently wunbar of researchers have used stable distributions for

modelling various phenomena. Since every : distribution is inf. div., the inf. div.

distributions can be used wherever stable di ibutions are, and the result is a model

which is less restrictive and can be valid under more general circumstances.

2. Heavy-tailed distributions. A number of researchers have studied stable

distributions |see. e.g., DuMouchel (1973, 1975), Fama and Roll (1971)] because they
are "heavy-tailed." A primary motivation for such studies is the observation of
economists that the distributions of changes in stock prices seem to be rather heavy-
tailed.

table distribution:are indeed heavy~tailed. 1In fact, the only stable distribution
wi finite variance is the normal distribution. It is acknowledged [see, e.g.,
DuMouchel (1973), p. 469] that it is not necessary to use infinite~veriance distributions
in order to provide heavy-tailed

If fact, all infinitely divisible distributions are heavy-tailed. For, as will

be shown below, their fourth cumulant, Ky is necessarily non~negative.

M denote the r-th central moment, we have
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wher F{x) denotes the distribution function and o = y, is the variance. Thus

i#{x) weights relatively heav ly those points x for whict

Thus F(x) correspoands to a relatively heavy-tailed distribution. HMore precisely,

, 80 @ distribution with positive fourth cumulant
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It remains to show that the fourth cumulant is non-negative.

(&)
o R = P = . . o~ . L L AL 2 e gt L 5 o 1
HEOR 2.1. If X <8 inf. div. with finitte fourth moment, then the fourth
nt K, 18 non-nz2gative,.

PROOF. [CF. Pierre(1969), p. 320.] Since X has finite fourth moment, the fourth

cumalant exists and is given by

, 2 N B :
{2.3) Ky = (d " /du )iog 1(u)ﬁu:o,
where f(u) 1is the e¢.f. of X. BSinece X s inf. div., the logarithm of f(u)

can be written [see. e.g., Lodve(1963), p. 293] as
. s -2
(2.2} lof f(u) = iup + flexp(iux) - 1 - iux]x daK(x),

where K(x) is monotone increasing and of bounded variation, K(-«=) = 0, k()

= Yar{X) < ®», and @ = B(X). The integrand is definea at the origin by continuity.

Now, from Lodve(1963), p. 293, one sees that

2
(2.3) - (d“/dug)log f(u) = JSexp(iux)aF(x) .

R ot

Thus the left-hand side of (2.3) is a c¢.f. Since this c.f. is twice differentiable,

i
its second derivative is given by [Loave(1963), p. 200]
N L - 2 | -
(d"/au )loz f(u) = Sx"exp(iux)dK(x) . ]
Thus, by (2.1},

(2.h) x; = JSxakix) » 0O,




- 11 oW CcOt der the model
I\ 4 /( - "\{ [ ',"’
whare the r.v.'s Y and 7 are independent, non~-identically distributed and individu-
ally not vserved. Phe .V, { has a distribution in a parametric family {:’U}
and Z h a distribution in another purametric family {Qw} » Thus the family of
distributions for the observed r.v. X 1is a family of convolution distributions
{F =1 ¥Q }, where ¥ 1ig the convolution operation of distribution functions.
8, B

This model is conslidered by Sclove and Van Ryzin (19§p). They show that, when 7 is
discrete, maximum-likelihood estimation of the parsmeters 6 and w becomes intract-
able and that quit renerally the method of moments offers & solution.

. = . - NI T . ~ 9\ - o

Any signal-plus-ncise model is of the form (3.1). The modei with discrete signal
Z can occur in any counting process where the count is recorded as a measured electri-
cal 11 which results from thz actual coun lus an error introduced by electrical

noise in the counting mechanism. Another application arises in the problem of estimating
teria) in a homogeneous solution where the "count"
X 1is measured as the grez on 2 slide occupied by the viruses where each virus occupies
a unit of area. Hence, the total area is Y + Z where Z is the number of viruses

and Y is the sum of the deviations from the ideal (one virus per unit area) plus
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ent of area. In many such applications it is reasonable to take

continuous variable Y to be normal and that of the discrete

the distribution of

to be Poisson or Poisson-related (e.g., negative binomial or some other

o
[a

compound Poigsson distribution).

Now, if X =Y + Z, where Y 1is normal and Z is Poisson or compound Poisson,
then X is inf. div. In fact, the r.v. X is inf. div. if and only if (2.2) holds.

ned by

J

continuity at the crigin. Hence, since the limit

(o]

The integrand in {2.2) is

. ’ -2 .
as x tends to zero of the integrand [exp(iux) - 1 - iux]x © is —u?, we have

i

(3.2) Tog £0u) = fan = u‘ﬁ? + flexp(iux - 1 - iux]x-QdM(x)

where 6 is the jump of K(x) at the origin and M(x) has no mass at the origin.

+ Bo X d Bt X4+ Ty where ¥ has log c.f. egual to —uQGa and

This 1s equivaler
7
4 : § & s .
hence is normal [with Var(Y) = 26"], and % has lof c.f. equal to the integral in
(3.2). The r.v. Z is called the "Poisson component" of X or is said to be of

"Poisson typ2." Thus the convolution model (3.1) with Z suitably distributed leads

to an inf., div. X. Conversely, every inf. div. X obeys a convolution model.




It was noticed by Borges (1966) and later independently by Pierre (1967)
that nullity of the fourth cumulant characterizes the normal distribution in
the class of inf. div. laws.

THEOREM L.1. An inf. div. distribution is normal if and only if ite fourth
cwnulant is zero.

PROOF. If X 1is normal, then its c.f. f(u) satisfies

log £lu) = fuu - -5,

so that in the expansion of log f(u) all terms of degree greater than two
vanish. The r-th cumulant is the coefficient of irur/r! in the expansion.
Hence all cumulants of order greater than two vanish. Conversely, suppose X
is inf. div. and has zero fourth cumulant. By (2.2) and (3.2), X is normal if
and only if K(x) increases only at x = 0.‘ Hence it suffices to prove that

K(x) increases only at x = 0. But k) = 0, so this is immediate from (2.4).

Using this characterization of the normal distribution among inf. div. lawvs,
one can construct a test of the hypothesis that an inf. div. r.v. is normally
distributed. The hypothesis to be tested is

H: X 1is normally distributed, given that X is inf. div.

The alternative hypothesis is not H: X 1is inf. div. but is not nofmally dis~
tributed. The hypothesis is equivalent to k), = 0. '

An(unbiased) estimator for k), is [Kendall and Stuart, p. 281, (12.29)]
iy . n2{(n+l)mh - 3(n-l)m22]/[(n—l)(n—2)(n-3)],

where

n -r
m Zial(xi -x)/n

is the sample analogue of W (and is a biased estimator of ur). The statistic
kh/o(kh)’ where 0o(S) denotes the standard deviaticn of the statistic S,

is asymptotically normally distributed under H; so is kh/s(kh)’ if S(kb)

is a consistent estimator for c(kh). The variance of k, is relatively compli-
cated [Kendall and Stuart (1969), p. 290, (12.37)], but under the hypothesis of
normality it reduces simply to

—
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o?(x,) = 4802/ (n-1)3

[Kendall and Stuart (1969), p. 296, (12.71)]; a consistent estimator for this is

2

obtained by substituting 32 = Zn ( -2)2 for o¢°. (Alternatively, one could

x
i=1'"1i
replace 58 by an unbiased estimator for o .) At level a one rejects the

hypothesis of normality if

lkh/s(kh), > z(a/2),
where z(p) denotes the upper p-th percentage point of the standard normal
distribution.

5. Testing for normal-plus-Poisson. Of special interest in the convolution

model is the case in which Y 1is normal and Z 1is Poisson. Sclove and Van Ryzin
(1971) give parameter estimates for such special cases. Before applying their
results, it would be desirable to test the adequacy of such a special model.

The adequacy of the normal-plus-Poisson assumption'cap be tested against the under-
lying assumption that X is inf. dfv. For this we need the following theorem
[Pierre (1971), p. 3u8].

i

THEOREM 5.1. Suppose X i8 inf.div. Then X =
Z i8 ordinary Potisson, if and only if

Y+Z, where Y <s normal and-

(5.1) g = 2.<5 i T 0.

PROOF. The c.f. of a Poisson r.v. with parametér ¥ has logarithm equal to
(5.2) ulexp(iu) - 1] .

The terms

iup + Slexp(iux) - 1 - iux]x-sz(x)
of (3.2) are of the form (5.2) if and only if M(x) increases only at x = 1.
Now suppose (5.1) holds. Then

0 = Kg = 2x5 + <)

= (d6/du6) log £(u) lu=0 -2(d5/du5) log f(u)|u=° + (d"/du") log £(u) ‘u=0
= rlan(x) - 2rdaM(x) ¢ fxPaM(x)

e rx2(x° - 2% + 1)aM(x)
= Ixz(x-l)2dM(x) %

e i s o i s e ol
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Thus M(x) increases only at x = 1 [an increase at x = 0 having already been

excluded in replacing K(x) by M(x)], and so 2 1is ordinary Poisson. Cocnversely,
ifr X 2 Y + Z, where Y is normal and Z 1is Poisson with parameter u, then
the log c.f. is given by

log f(u) = -u262 + ulexp(iu) -~ 1]

= jup + 12u2(262fu)/2 + 13u3u/3! + ihuhu/h! B i
so that

(5.3) Ky = M,

In particular,

= 262+;1, R R Ks e

K2 3

K6 - 2(5 + k) = p=-2u+u = 0.

An estimate of B8 = Kg = 2x5
k-statistics are given in Kendall and Stuart (1969), page 280, (12.28). Let

+ K), is b= k6 -~ 2k5 + kh’ where these

sa(b) be a consistent estimator for 02{b). At level a one rejects the
normal-plus-Poisson hypothesis if |b/s(b)| > 2z(a/2). The quantities Var(k),
Var(ks), Var(ks), Cov(kh,ks), and Cov(kh,ké) needed to compute Var(b) are
given in Kendall znd Stuart(1969), pazes 290-294. Unfortunatelyf Cov(ks,ké)
is not given.] These formulas are complicated but could be simplified, using
(5.3), to provide an expression for cz(b) under the normal-plus-Poisscn hypo-
thesis. This expression will involve only E(Y), Var(Y), and E(Z), which could be
estimated unbiasedly by formulas provided by Sclove and Van Ryzin (1971). These
estimates could then be substituted into the expression for o(b) to provide
the required consistent estimate s(b).

An alternative approach is subsampliné. One partitions the sample into
several (say, t) disjoint subsamples and computes an estimate b from each.
Let bJ, J=1,2,...,t, denote the subsample values. Define i

v = Zjﬂbdlt,
and take
) = £l by - HLe(e-1)]

Then the test statistic is b/s(b) . One needs to take t large enough so that

approximate normality of b can be used.




8

6. Testing for normality, ziven normal-plus-Poisson. The presence of the
.~ B 2 —

Poisson component Z could affect adversely the power cf the zest of normality

of Section 4. Accordingly, it makes sense to consider testing nested hypotheses

in sequence. One first tests the hypothesis of Eection 5, viz., K6-2KS ¥k, = 0.
If this hypothesis is rejected, one stcps and retains the full model.(The nature
of the component Z 1is not then further specified.) On the other hand, if this

hypothesis is accepted, one then tests the hypothesis

“® * 0, given that Kg = 2(5 + <) = 0,

This is logically equivalent to the hypothesis ;
K’6 -2!(5 = Q.

The statistic c¢ = k6 - 2k5 is an unbiased estimator for g - 2(5 . A test

statistic is c¢/s(c), where s(c¢c) is a consistent estimator for o(c). Either

of the approaches of Section 5 could be used. The hypothesis of normality would
greatly simplify the expression for ofc).

7. Testing for a Poisson distribution. Though we have focused on continuous

r.v.'s X, it is of interest tc note how one can test the hypothesis that X is

Poisson (i.e., Y 1is zero and Z 1is ordinary Poisson). The r.v. X is Poisson

if and only if K(x) can have a jumpt only at x = 1. This corresponds to

S(x - 1)2dK(x)

0 =
= xPaK(x) - 2rxak(x) + fak(x)
b, b B a3 2 42
= (a/du’) 2og f(u)] o = 2(a7/au”) log £(u)| _j + (a°/au”) log £(u)| _
= Kh-2k3 + K5
® 3 »
say. Let 4 =k - 2k3 + k, be the k-statistic estimate of 9. Then a test

statistic for the hypothesis of a Poisson distribution is d/s(d), where s(d)
is a consistent estimator for o(d). Again, an alternative approach is provided

by subsampling.
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